Limitações De Movimentação Média Na Série De Tempo


As 7 armadilhas das médias móveis Uma média móvel é o preço médio de um título durante um período de tempo especificado. Analistas freqüentemente usam médias móveis como uma ferramenta analítica para tornar mais fácil seguir as tendências do mercado, como os valores mobiliários para cima e para baixo. As médias móveis podem estabelecer tendências e medir o momentum. Portanto, eles podem ser usados ​​para indicar quando um investidor deve comprar ou vender um determinado título. Os investidores também podem usar médias móveis para identificar pontos de suporte ou resistência, a fim de avaliar quando os preços são susceptíveis de mudar de direção. Ao estudar os intervalos comerciais históricos, pontos de suporte e resistência são estabelecidos onde o preço de uma garantia reverteu sua tendência de alta ou de baixa, no passado. Esses pontos são então usados ​​para fazer, comprar ou vender decisões. Infelizmente, as médias móveis não são ferramentas perfeitas para estabelecer tendências e apresentam muitos riscos sutis, mas significativos, para os investidores. Além disso, as médias móveis não se aplicam a todos os tipos de empresas e indústrias. Algumas das principais desvantagens de médias móveis incluem: 1. Médias móveis desenhar tendências de informações passadas. Eles não levam em conta mudanças que podem afetar o desempenho futuro de uma segurança, como novos concorrentes, maior ou menor demanda por produtos na indústria e mudanças na estrutura gerencial da empresa. 2. Idealmente, uma média móvel vai mostrar uma mudança consistente no preço de um título, ao longo do tempo. Infelizmente, as médias móveis não funcionam para todas as empresas, especialmente para aqueles em indústrias muito voláteis ou aqueles que são fortemente influenciados por eventos atuais. Isto é especialmente verdadeiro para a indústria de petróleo e indústrias altamente especulativas, em geral. 3. As médias móveis podem ser distribuídas em qualquer período de tempo. No entanto, isso pode ser problemático porque a tendência geral pode mudar significativamente dependendo do período de tempo utilizado. Os prazos mais curtos têm mais volatilidade, enquanto os períodos de tempo mais longos têm menos volatilidade, mas não contam com novas mudanças no mercado. Os investidores devem ter cuidado com o prazo que escolherem, para se certificar de que a tendência é clara e relevante. 4. Um debate em curso consiste em saber se deve ou não dar mais ênfase aos últimos dias do período. Muitos acham que os dados recentes melhor refletem a direção da segurança, enquanto outros acham que dar alguns dias mais peso do que outros, incorretamente tende a tendência. Investidores que utilizam métodos diferentes para calcular médias podem traçar tendências completamente diferentes. (Saiba mais em Simple vs. Exponential Moving Averages.) 5. Muitos investidores argumentam que a análise técnica é uma maneira sem sentido de prever o comportamento do mercado. Eles dizem que o mercado não tem memória eo passado não é um indicador do futuro. Além disso, há uma pesquisa substancial para apoiar isso. Por exemplo, Roy Nersesian conduziu um estudo com cinco estratégias diferentes usando médias móveis. A taxa de sucesso de cada estratégia variou entre 37 e 66. Esta pesquisa sugere que as médias móveis só rendem resultados cerca de metade do tempo, o que poderia fazer com que eles sejam uma proposta arriscada para efetivamente timing do mercado de ações. 6. As seguranças mostram frequentemente um teste padrão cíclico do comportamento. Isso também é verdadeiro para as empresas de serviços públicos, que têm uma demanda constante por seu produto ano a ano, mas experimentam fortes mudanças sazonais. Embora as médias móveis podem ajudar a suavizar essas tendências, eles também podem ocultar o fato de que a segurança está tendendo em um padrão oscilatório. (Para saber mais, veja Manter Um Olho Em Momentum.) 7. O objetivo de qualquer tendência é prever onde o preço de um título será no futuro. Se uma segurança não é tendência em qualquer direção, não fornece uma oportunidade de lucrar com qualquer compra ou venda a descoberto. A única maneira que um investidor pode ser capaz de lucrar seria implementar uma estratégia sofisticada, baseada em opções que depende do preço permanecer estável. A linha inferior As médias móveis foram consideradas uma ferramenta analítica valiosa por muitos, mas para que toda a ferramenta seja eficaz você deve primeiramente compreender sua função, quando a usar e quando não a usar. Os perigos aqui discutidos indicam quando as médias móveis podem não ter sido uma ferramenta eficaz, como quando usadas com títulos voláteis, e como eles podem ignorar certas informações estatísticas importantes, como padrões cíclicos. Também é questionável como as médias móveis eficazes são para indicar com precisão tendências de preços. Dadas as desvantagens, médias móveis podem ser uma ferramenta melhor usada em conjunto com outros. No final, a experiência pessoal será o indicador final de quão eficaz eles realmente são para o seu portfólio. (Para mais, veja as Médias Movimentais Adaptáveis ​​Conduzem a Melhores Resultados) Uma medida da relação entre uma mudança na quantidade demandada de um bem particular e uma mudança em seu preço. Preço. O valor de mercado total do dólar de todas as partes em circulação de uma companhia. A capitalização de mercado é calculada pela multiplicação. Frexit curto para quotFrancês exitquot é um spin-off francês do termo Brexit, que surgiu quando o Reino Unido votou. Uma ordem colocada com um corretor que combina as características de ordem de parada com as de uma ordem de limite. Uma ordem de stop-limite será. Uma rodada de financiamento onde os investidores comprar ações de uma empresa com uma avaliação menor do que a avaliação colocada sobre a. Uma teoria econômica da despesa total na economia e seus efeitos no produto e na inflação. A economia keynesiana foi desenvolvida. A abordagem mais simples seria tomar a média de janeiro a março e usar isso para estimar as vendas de abril de 1982: (129 134 122) 3 128.333 Assim, com base nas vendas de janeiro a março, você prevê que as vendas em abril Será de 128.333. Uma vez que as vendas reais de April8217s vêm dentro, você calcularia então a previsão para maio, desta vez usando fevereiro com abril. Você deve ser consistente com o número de períodos que você usa para a média móvel de previsão. O número de períodos que você usa em suas previsões de média móvel é arbitrário, você pode usar apenas dois períodos, ou cinco ou seis períodos o que você deseja gerar suas previsões. A abordagem acima é uma média móvel simples. Às vezes, as vendas mais recentes podem ser influenciadores mais fortes das vendas do próximo mês, então você quer dar a esses meses mais próximos mais peso em seu modelo de previsão. Esta é uma média móvel ponderada. E assim como o número de períodos, os pesos que você atribuir são puramente arbitrária. Let8217s dizem que você quis dar as vendas de March8217s 50 peso, February8217s 30 peso, e January8217s 20. Então sua previsão para abril será 127.000 (122.50) (134.30) (129.20) 127. Limitações dos Métodos de Movimentação Média As médias móveis são consideradas uma técnica de previsão 8220smoothing8221. Porque você está tomando uma média ao longo do tempo, você está suavizando (ou alisando para fora) os efeitos de ocorrências irregulares dentro dos dados. Como resultado, os efeitos da sazonalidade, ciclos de negócios e outros eventos aleatórios podem aumentar dramaticamente o erro de previsão. Dê uma olhada em um ano completo de 8217s de dados, e comparar uma média móvel de 3 períodos e uma média móvel de 5 períodos: Observe que neste exemplo que eu não criar previsões, mas sim centrou as médias móveis. A primeira média móvel de 3 meses é para fevereiro, e é a média de janeiro, fevereiro e março. Eu também fiz semelhante para a média de 5 meses. Agora dê uma olhada no seguinte gráfico: O que você vê Não é a série média móvel de três meses muito mais suave do que a série de vendas reais E como sobre a média móvel de cinco meses It8217s ainda mais suave. Assim, quanto mais períodos você usar em sua média móvel, o mais suave sua série de tempo. Assim, para a previsão, uma média móvel simples pode não ser o método mais preciso. Métodos de média móvel se revelam bastante valiosos quando você está tentando extrair os componentes sazonais, irregulares e cíclicos de uma série de tempo para métodos de previsão mais avançados, como regressão e ARIMA, eo uso de médias móveis em decomposição de uma série de tempo será abordado mais tarde Na série. Determinando a precisão de um modelo de média móvel Geralmente, você quer um método de previsão que tenha o menor erro entre os resultados reais e os previstos. Uma das medidas mais comuns de precisão de previsão é o Desvio Médio Absoluto (MAD). Nesta abordagem, para cada período na série de tempo para a qual você gerou uma previsão, você toma o valor absoluto da diferença entre os valores atuais e previstos do período (o desvio). Então você média esses desvios absolutos e você começa uma medida de MAD. MAD pode ser útil para decidir o número de períodos que você média, ou a quantidade de peso que você coloca em cada período. Geralmente, você escolhe o que resulta no menor MAD. Aqui está um exemplo de como MAD é calculado: MAD é simplesmente a média de 8, 1 e 3. Médias móveis: recapitulação Ao usar médias móveis para previsão, lembre-se: As médias móveis podem ser simples ou ponderadas O número de períodos que você usa para o seu Média e quaisquer pesos que atribuir a cada um são estritamente arbitrários Médias móveis alisam padrões irregulares em dados de séries temporais quanto maior o número de períodos usados ​​para cada ponto de dados, maior o efeito de suavização Devido ao alisamento, previsão das vendas do próximo mês com base no A maioria das recentes vendas de meses pode resultar em grandes desvios por causa da sazonalidade, ciclos e padrões irregulares nos dados e as capacidades de suavização de um método de média móvel pode ser útil na decomposição de uma série de tempo para métodos de previsão mais avançados. Próxima Semana: Exponential Smoothing Na próxima semana8217s Forecast Sexta-feira. Vamos discutir os métodos exponenciais de suavização, e você verá que eles podem ser muito superiores aos métodos de previsão média móvel. Ainda não sei porquê a nossa previsão Sexta-feira postagens aparecem na quinta-feira Descubra em: tinyurl26cm6ma Gostar desta mensagem: Mensagem navegação Deixe uma resposta Cancelar resposta Eu tinha 2 perguntas: 1) Você pode usar a abordagem centrada MA para prever ou apenas para remover a sazonalidade 2) Quando Você usa o t simples (t-1t-2t-k) k MA para prever um período à frente, é possível prever mais de um período à frente Eu acho que então a sua previsão seria um dos pontos de alimentação para o próximo. Obrigado. Adoro a informação e as suas explicações. Estou contente por você gostar do blog. Certamente, vários analistas usaram a abordagem de MA centralizada para a previsão, mas eu pessoalmente não faria, uma vez que essa abordagem resulta em uma perda de observações em ambos os lados. Na verdade, isso envolve sua segunda pergunta. Geralmente, MA simples é usado para prever apenas um período à frente, mas muitos analistas 8211 e eu também, por vezes 8211 vai usar a minha previsão de um período de tempo como uma das entradas para o segundo período à frente. It8217s importante lembrar que quanto mais no futuro você tentar prever, maior será o seu risco de erro de previsão. É por isso que eu não recomendo o MA centralizado para a previsão 8211 a perda de observações no final significa ter que depender de previsões para as observações perdidas, bem como o período (s) à frente, por isso há maior chance de erro de previsão. Leitores: você é convidado a pesar sobre isso. Você tem alguma opinião ou sugestões sobre este Brian, obrigado por seu comentário e seus elogios no blog Nice iniciativa e explicação agradável. It8217s realmente útil. Prevejo placas de circuito impresso personalizadas para um cliente que não fornece previsões. Eu usei a média móvel, no entanto, não é muito preciso como a indústria pode ir para cima e para baixo. Vemos para o meio do verão até o final do ano que o transporte pcb8217s está acima. Então nós vemos no começo do ano retarda a maneira para baixo. Como posso ser mais preciso com os meus dados Katrina, do que você me disse, parece que suas vendas de placa de circuito impresso tem um componente sazonal. Eu faço a sazonalidade do endereço em alguns dos outros bornes de sexta-feira da previsão. Outra abordagem que você pode usar, o que é bastante fácil, é o algoritmo Holt-Winters, que leva em conta a sazonalidade. Você pode encontrar uma boa explicação aqui. Certifique-se de determinar se seus padrões sazonais são multiplicativos ou aditivos, porque o algoritmo é ligeiramente diferente para cada um. Se você traçar seus dados mensais de alguns anos e ver que as variações sazonais nas mesmas épocas dos anos parecem ser constante ano após ano, a sazonalidade é aditiva se as variações seasonal ao longo do tempo parecem estar aumentando, a seguir a seasonalality é Multiplicativo. A maioria das séries temporais sazonais serão multiplicativas. Em caso de dúvida, considere multiplicativo. Boa sorte Olá, Entre esses métodos:. Previsão da Nave. Atualizando a Média. Média móvel de comprimento k. Ou Média Móvel Ponderada de comprimento k OR Suavização Exponencial Qual desses modelos de atualização você me recomenda usar para prever os dados Para minha opinião, estou pensando em Moving Average. Mas eu não sei como torná-lo claro e estruturado Depende realmente da quantidade e qualidade dos dados que você tem e seu horizonte de previsão (longo prazo, médio ou curto prazo) Quais são as principais desvantagens de usar Moving Médias (MA) Uma medida da relação entre uma mudança na quantidade demandada de um bem particular e uma mudança em seu preço. Preço. O valor de mercado total do dólar de todas as partes em circulação de uma companhia. A capitalização de mercado é calculada pela multiplicação. Frexit curto para quotFrancês exitquot é um spin-off francês do termo Brexit, que surgiu quando o Reino Unido votou. Uma ordem colocada com um corretor que combina as características de ordem de parada com as de uma ordem de limite. Uma ordem de stop-limite será. Uma rodada de financiamento onde os investidores comprar ações de uma empresa com uma avaliação menor do que a avaliação colocada sobre a. Uma teoria econômica da despesa total na economia e seus efeitos no produto e na inflação. A economia keynesiana foi desenvolvida.

Comments

Popular Posts